I. Evolution Review

a. Natural Selection selects for favorable _____

The more variety there is within a population, the more likely that population will _____

- b. Genetic Variation is stored in _____
 - •A ______is the combined alleles of all the individuals in a population.
 - The more alleles for a trait, the greater the genetic variation
 - _____ is the relative amount of an allele in a population.

• How to calculate allele frequency in a population:

- 1. Count the number of times a specific allele occurs in a gene pool
- 2. Divide by the total number of alleles
- 3. Answer expressed as a percentage (%)
- c. Lethal Alleles are recessive _
 - *Most people don't know they are carriers
 - *Don't know they have it till later in life (____
 - *Both parents must carry the recessive allele (only 25% chance of passing on)
- d. How is genetic variation created?
 - •
 - •
- II. Mutations
 - a. A mutation is a ____
 - New mutations are constantly being generated, adding new alleles to the gene pool, thus increasing genetic variation in the population
 - Change can be ____
 - b. Mutations alter genotype
 - c. Natural Selection acts on phenotype.
 - DNA is NOT changed
 - New variations ARE NOT added
 - Favorable traits (either from mutations or meiosis) are passed on
- III. Distribution of Traits : Natural Selection acts on the distribution of traits within a population
 - Within a population there is a range of phenotypes for each trait.
 These ranges often have more of some phenotypes and less of others.
 Natural Selection can change the distribution in 3 ways:
 - 1.
 - 2.

3.

- b. Stabilizing Selection
 - Extremes from both ends of the frequency distribution are eliminated.
 - •
 - Example:
- c. Directional Selection
 - Favors phenotypes at ______
 - What we usually think of as natural selection.
 - Example:

of a trait's range.

- d. Disruptive Selection
 - Both extreme phenotypes are favored at expense of middle phenotype.
 - Favoring both extremes can lead to _
 - Example:

IV. Gene Flow

- a. The movement (migration) of alleles from_____
- b. Can occur in
- c. increases variation in receiving population *a lack of gene flow between 2 populations increases the chance they will evolve into 2 different species.
- V. Genetic Drift: Change in allele frequency _____
 - causes a loss of diversity
 - greatly affects smaller populations
 - a. Founder Effect
 - A small group of individuals break away and colonize a new area.

_ from original group

- Example: Example: Ellis-van Creveld Syndrome - Amish population in Pennsylvania

b. Bottleneck Effect

Occurs after an event greatly reduces the size of a population:

-

- **New population no longer has many alleles that old population has.
- c. Effects of Genetic Drift
 - •
 - •